
Operations Orchestration
Software Version: 10.70

Windows and Linux Operating Systems

Action Developers Guide

Document Release Date: November 2016
Software Release Date: November 2016

Action Developers Guide

HPE Operations Orchestration (10.70) Page 2 of 36

Legal Notices

Warranty
The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such products and services. Nothing
herein should be construed as constituting an additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

The information contained herein is subject to change without notice.

Restricted Rights Legend
Confidential computer software. Valid license from Hewlett Packard Enterprise required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial
Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial
license.
(missing or bad snippet)

Copyright Notice
© 2005-2016 Hewlett Packard Enterprise Development LP

Trademark Notices
(missing or bad snippet)(missing or bad snippet)

Action Developers Guide

HPE Operations Orchestration (10.70) Page 3 of 36

Documentation Updates
To check for recent updates or to verify that you are using themost recent edition of a document, go to: https://softwaresupport.hpe.com/.

This site requires that you register for an HP Passport and to sign in. To register for an HP Passport ID, click Register on the HPE Software Support site or click Create an
Account on the HP Passport login page.

You will also receive updated or new editions if you subscribe to the appropriate product support service. Contact your HPE sales representative for details.
(missing or bad snippet)

Action Developers Guide

HPE Operations Orchestration (10.70) Page 4 of 36

https://softwaresupport.hpe.com/

Contents

Introduction 6
System Requirements 6
Prerequisites 7
HPE OO Content Development 7

HPE OO Plugins 7
Developing Plugins for Java Actions 8

Preparing to Create a Plugin Using a Maven Archetype 8
Creating a Plugin Using a Maven Archetype 10
Open the Project in a Java IDE 11
Creating a New Action 12
Build Maven Plugin 13

Developing Plugins for .NET Actions 13
Developing Plugins for Legacy Actions 17
Creating Operations from@Actions 20
Create a Content Pack 21

CloudSlang Content Development 22
Maven Artifacts 22
Developing Maven Artifacts for Java Actions 22

Preparing to Create a Maven Artifact 22
Creating a Maven Project 22
Open the Project in a Java IDE 23
Creating a New Action 24
Build Maven Artifact 24
Creating CloudSlang Operation from Java Action 24

Creating a new Project from a predefined template 24
Create CloudSlang Operation 25

Developing Maven Artifacts for Python Scripts 26
Create Maven Project 26
Open Project in Python IDE 26
Build Maven Artifact 26
Creating CloudSlang Python Operation 27

HPE Operations Orchestration (10.70) Page 5 of 36

Create CloudSlang Operation 27
Create a Content Pack 27

Developing @Actions 28
"Hello World!" Example 28
Passing Arguments to @Actions 29
Return Values 30
Adding @Action Annotations 30
Annotations 31

Action 31
Param 32
Output 32
Response 33

@Action Data Definition Example 34
Testing Extensions 34

Testing Extensions as Part of the Project Build 35
References 35

Introduction

This document provides content developers with guidelines for developing new operations for the
Operations Orchestration platform. Operations are used to create new flows that can be executed
inside HPE Operations Orchestration flow execution engine.

Introducing new content requires building an extension and deploying it to HPE OOCentral or Studio.
An extension is an artifact that contains actions written in Java or.NET.

Actions are code blocks used to create new operations for HPE Operations Orchestration. You can
also use actions to create new operations for the CloudSlang platform. HPE Operations Orchestration
can also execute operations and flows written in CloudSlang language.

System Requirements

l Java 1.7

l NET Framework 4.0 (required only if you want to create .NET actions)

Action Developers Guide

HPE Operations Orchestration (10.70) Page 6 of 36

l Maven 3.3.9 (if you want to build operations for CloudSlang)

l Maven 3.2.1

l Maven 3.0.5 (if you want to build an operation for Operations Orchestration 10.20 or lower versions)

l Java IDE (optionally, youmay want to install a Java IDE with Maven support, like Eclipse or
IntelliJ)

l Python IDE (optionally, youmay want to install a Python IDE like PyCharm or Eclipse)

Prerequisites

Java or .NET knowledge is required for developing new actions.

The action development process relies onMaven for resolving dependencies and building the project.

In order to properly comprehend all the topics discussed in this document, it is recommended that you
read the “MavenGetting Started Guide” reference at the end of this document before continuing.

To develop CloudSlang content, it is recommended that you first read the “CloudSlang Tutorial”
reference at the end of this document.

HPE OO Content Development

HPE OO Plugins

To create new content for HPE Operations Orchestration 10.x, you need to develop an extension called
a plugin.

AnOO plugin is a JAR file, packaged as aMaven plugin that contains one or multiple actions.

Each plugin defines its own isolated classpath. Classpath isolation ensures that different plugins
can use conflicting dependencies. For example, plugin A can use dependency X version 1.0 and
plugin B can use the same X dependency, but with version 2.0. Classpath isolation ensures that
you can use both plugins in the same flow regardless of the conflicting classpath issue.

HPE Operations Orchestration 10.x provides a simple way for creating Java actions by introducing the
@Action annotation. See "Developing Actions" for more information.

Action Developers Guide

HPE Operations Orchestration (10.70) Page 7 of 36

HPE Operation Orchestration can also execute .NET actions. Actions written in .NET are referenced
by a wrapping Java plugin. See ".NET Extensions" for more information.

In previous versions of HPE Operations Orchestration, extensions were called IActions, They
implemented the IAction interface. The IAction interface is now deprecated. Users writing new
content should refrain from implementing the IAction interface and instead use the@Action
annotation.

Developing Plugins for Java Actions

This section describes how to develop plugins containing only java actions, marked with the@Action
annotation.

Using theMaven archetype com.hp.oo.sdk:oo-plugin-archetype you can create a skeleton for a
plugin and a Studio project.

Preparing to Create a Plugin Using a Maven Archetype

Install Maven

Install Maven on your computer, adding the bin folder to the "Path" system variable. This enables you
to run the mvn command from anywhere in the file system.

For more information on theMaven Installation process, check the “Installing ApacheMaven” reference
in the References section.

HPE Operations Orchestration SDK 10.6x depends onMaven 3.2.1. This version of Maven has a
defect concerning the fact that it tries to resolve dependencies using external repositories even though
we specify our internal Nexus artifact management system in the settings.xml file. The workaround is
to forceMaven to use a single repository – the internal repository. For more information, see the “Mirror
RemoteMaven Repositories” section.

Mirror Remote Maven Repositories

You can forceMaven to use a single remote repository by mirroring all requests to remote repositories
through an internal (company) repository. The internal repository must either contain all the desired
artifacts, or it should be able to proxy the requests to other repositories. This setting is most useful
when using an internal company repository with theMaven Repository Manager to proxy external
requests.

Action Developers Guide

HPE Operations Orchestration (10.70) Page 8 of 36

To achieve this, configure amirror for everything (*) in your settings.xml file. For complete guidelines,
check the “UsingMirrors for Repositories” reference at the end of this document.

<settings>
...
<mirrors>
<mirror>

<id>internal-repository</id>
<name>Maven Repository Manager running on repo.mycompany.com</name>
<url>http://repo.mycompany.com/proxy</url>
<mirrorOf>*</mirrorOf>

</mirror>
</mirrors>
...
</settings>

Create a local Maven repository

l Expand sdk-dotnet-<version>.zip and sdk-java-<version>.zip to:

Windows: %HOMEPATH%\.m2\repository.

Linux: $HOME/.m2/repository.

These files are located on the HPE OOZIP file in the SDK folder.

Following is an example of a directory structure, if the files were correctly extracted:

Register the plugin archetype

l Open the command prompt and enter the following command:

mvn archetype:crawl

This updates theMaven archetype catalog under $HOME/.m2/repository.

Action Developers Guide

HPE Operations Orchestration (10.70) Page 9 of 36

Creating a Plugin Using a Maven Archetype

Create a sample project

1. Go to the path where you want to create a sample plugin project, and enter the following command
in the command line:

mvn archetype:generate -DarchetypeCatalog=file://$HOME/.m2/repository

Note: ForWindows, use%HOMEPATH%.

This initiates the project creation. A list of archetypes found in the catalog appears. Select the
number representing the archetype com.hp.oo.sdk:oo-plugin-archetype.

In the example below, select 1.

2. During the archetype creation, enter the following details:

o groupId: The group id for the resultingMaven project. acmeGroup is used in the example
below.

o artifactId: The artifact id for the resultingMaven project. acmeArtifact is used in the
example below.

o package: The package for the files in the project. The default for this option is the same as the
groupId.

o uuid: The UUID of the generated project. A randomly generated UUID is used in the example
below.

Action Developers Guide

HPE Operations Orchestration (10.70) Page 10 of 36

The build finishes and a project is created.

Open the Project in a Java IDE

The previous step created a new Java project with aMaven-basedmodel.

Open this project in a Java IDE application.

The project contains twomodules that have the same prefix as the provided artifact ID. One of the
projects is a content pack project and the other is a plugin project.

For example:

Action Developers Guide

HPE Operations Orchestration (10.70) Page 11 of 36

Parent project

In the illustrated example, the parent project is called acmeArtifact.

By default it contains twomodules—one a content pack and the other a plugin. This project groups
@Actions and their relevant operations and flows into a single content pack.

In large projects you can group actions in plugins based on functionality, protocols or technologies
such as: ssh-plugin, http-plugin etc. When you create operations from the actions of a project,
place them all in a single content pack project, disregarding the plugin in which it is contained.

Example: If you were developing aMicrosoft Office integration, youmight create several plugin
projects—one for eachOffice version. But there would be a single content pack project containing the
operations and flows.

Plugin project

In the example, the plugin project is called acmeArtifact-plugin.

This module contains the@Actions. When you are building this project (with Maven), the code inside is
compiled and the resulting JAR file can be opened in Studio, and operations can be created from the
@Actions inside.

Inside this module, a sample@Action can be found. You can delete it and write your own.

Content pack project

In the example, the content pack project is called acmeArtifact-cp.

This module represents the content pack. It includes any plugin modules upon which it is dependent,
for example, acmeArtifact-plugin and its dependencies), as well as any flows, operations, and
configuration items defined within it.

Creating a New Action

A Java action is amethod that conforms to the signature public Map<String, String>
doSomething(parameters), annotated with the@Action annotation.

You can find the complete specification of the@Action annotation in the Developing Actions section.

Action Developers Guide

HPE Operations Orchestration (10.70) Page 12 of 36

Build Maven Plugin

To build your maven project, navigate to the location of the parent project, for example,
c:\temp\acmeArtifact), open the command line and run mvn clean install.

You can see the artifacts resulted from the build process under the target folder of eachmodule.

These artifacts are also installed in the local maven repository located at
%HOMEPATH%\.m2\repository or $HOME/.m2/repository.

For example, you can find the resulted artifact from building acmeArtifact-plugin loacted in:
%HOMEPATH%\.m2\repository\acmeGroup\acmeArtifact-plugin\1.0.0\acmeArtifact-plugin-
1.0.0.jar.

Developing Plugins for .NET Actions

In order to create content using .NET actions, you need to:

1. Create a DLL file containing the implementation of the desired actions. The action class should
implement an IAction interface.

2. Deploy the created DLL, including referenced libraries, to the local Maven repository, using mvn
install:install-file. For more information on installing artifacts that were not built by Maven,
see http://maven.apache.org/plugins/maven-install-plugin/usage.html.

3. Generate an HPE OOMaven plugin, wrapping the .NET action. To do this, you need to:

a. Create a pom.xml file. For POM references, see http://maven.apache.org/pom.html.

b. Under the <dependencies> tag, add a list containing all the required DLLs. Define all DLL
artifacts using <type>dll</type>.

c. Run themvn install command from the folder containing the pom.xml file. This is assuming
that theMaven bin folder is contained in the system path.

The result is theMaven plugin, placed in the target folder and installed to the local Maven repository.
The target folder location is relative to the current folder.

The template of the pom.xml is:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Action Developers Guide

HPE Operations Orchestration (10.70) Page 13 of 36

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>[my plugin groupId]</groupId>
<artifactId>[my plugin artifactId]</artifactId>
<version>[my plugin version]</version>

<packaging>maven-plugin</packaging>

<properties>
<oo-sdk.version>[THE LATEST HPE OO_SDK VERSION]</oo-sdk.version>
<oo-dotnet.version>[THE LATEST HPE OO_DOTNET VERSION]</oo-dotnet.version>

</properties>

<dependencies>
<!-- required dependencies -->
<dependency>

<groupId>com.hp.oo.sdk</groupId>
<artifactId>oo-dotnet-action-plugin</artifactId>
<version>${oo-sdk.version}</version>

</dependency>

<dependency>
<groupId>com.hp.oo.dotnet</groupId>
<artifactId>oo-dotnet-legacy-plugin</artifactId>
<version>${oo-dotnet.version}</version>
<type>dll</type>

</dependency>

<dependency>
<groupId>${project.groupId}</groupId>
<artifactId>IAction</artifactId>
<version>9.0</version>
<type>dll</type>

</dependency>
<!-- end of required dependencies -->

<dependency>
<groupId>[groupId-1]</groupId>
<artifactId>[artifactId-1]</artifactId>
<version>[version-1]</version>
<type>dll</type>

</dependency>

<dependency>
<groupId>[groupId-2]</groupId>
<artifactId>[artifactId-2]</artifactId>

Action Developers Guide

HPE Operations Orchestration (10.70) Page 14 of 36

<version>[version-2]</version>
<type>dll</type>

</dependency>

...

<dependency>
<groupId>[groupId-n]</groupId>
<artifactId>[artifactId-n]</artifactId>
<version>[version-n]</version>
<type>dll</type>

</dependency>
</dependencies>

<build>
<plugins>

<plugin>
<groupId>com.hp.oo.sdk</groupId>
<artifactId>oo-action-plugin-maven-plugin</artifactId>
<version>${oo-sdk.version}</version>
<executions>

<execution>
<id>generate plugin</id>
<phase>process-sources</phase>
<goals>

<goal>generate-dotnet-plugin</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>
</project>

Example: In the following example:

l The POM file is named example.pom.xml.

l Themy-dotnet-actions.dll contains the desired actions.

l The generatedMaven plugin is com.example:my-dotnet-plugin:1.0.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

Action Developers Guide

HPE Operations Orchestration (10.70) Page 15 of 36

<groupId>com.example</groupId>
<artifactId>my-dotnet-plugin</artifactId>
<version>1.0</version>

<packaging>maven-plugin</packaging>

<properties>
<oo-sdk.version>[THE LATEST HPE OO_SDK VERSION]</oo-sdk.version>
<oo-dotnet.version>[THE LATEST HPE OO_DOTNET VERSION]</oo-dotnet.version>

</properties>

<dependencies>
<!-- required dependencies -->
<dependency>

<groupId>com.hp.oo.sdk</groupId>
<artifactId>oo-dotnet-action-plugin</artifactId>
<version>${oo-sdk.version}</version>

</dependency>
<dependency>

<groupId>com.hp.oo.dotnet</groupId>
<artifactId>oo-dotnet-legacy-plugin</artifactId>
<version>${oo-dotnet.version}</version>
<type>dll</type>

</dependency>
<dependency>

<groupId>${project.groupId}</groupId>
<artifactId>IAction</artifactId>
<version>9.0</version>
<type>dll</type>

</dependency>
<!-- end of required dependencies -->

<dependency>
<groupId>com.example</groupId>
<artifactId>my-dotnet-actions</artifactId>
<version>1.0</version>
<type>dll</type>

</dependency>
</dependencies>

<build>
<plugins>

<plugin>
<groupId>com.hp.oo.sdk</groupId>
<artifactId>oo-action-plugin-maven-plugin</artifactId>
<version>${oo-sdk.version}</version>
<executions>

<execution>
<id>generate plugin</id>

Action Developers Guide

HPE Operations Orchestration (10.70) Page 16 of 36

<phase>process-sources</phase>
<goals>

<goal>generate-dotnet-plugin</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>
</project>

Developing Plugins for Legacy Actions

This is a deprecated way of writing actions. It is recommended to use the@Action annotation for
developing new Java actions.

In order to create content using legacy actions, you need to:

1. Verify that you have a JAR containing the implementation of the desired actions, just like in
version 9.x. The action class should implement an IAction interface.

2. Deploy the JAR, including referenced libraries, to the local Maven repository, usingmvn
install:install-file. For more information on installing artifacts that were not built by Maven, see
http://maven.apache.org/plugins/maven-install-plugin/usage.html.

3. Generate an HPE OOMaven plugin, wrapping the legacy actions library. To do this, you need to:

a. Create a pom.xml file. For POM references, see http://maven.apache.org/pom.html.

b. Run the mvn install command from the folder containing the pom.xml file. This is
considering that theMaven bin folder is contained in the system path.

The result is theMaven plugin, placed in the target folder and installed to the local Maven repository.
The target folder location is relative to the current folder.

The content of the pom.xml is:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

Action Developers Guide

HPE Operations Orchestration (10.70) Page 17 of 36

<groupId>[my plugin groupId]</groupId>
<artifactId>[my plugin artifactId]</artifactId>
<version>[my plugin version]</version>

<packaging>maven-plugin</packaging>

<properties>
<oo-sdk.version>[THE LATEST HPE OO_SDK VERSION]</oo-sdk.version>
<oo-dotnet.version>[THE LATEST HPE OO_DOTNET VERSION]</oo-dotnet.version>

</properties>

<dependencies>
<!-- required dependencies -->
<dependency>

<groupId>com.hp.oo.sdk</groupId>
<artifactId>oo-legacy-action-plugin</artifactId>
<version>${oo-sdk.version}</version>

</dependency>
<!-- end of required dependencies -->

<dependency>
<groupId>[groupId-1]</groupId>
<artifactId>[artifactId-1]</artifactId>
<version>[version-1]</version>

</dependency>

<dependency>
<groupId>[groupId-2]</groupId>
<artifactId>[artifactId-2]</artifactId>
<version>[version-2]</version>

</dependency>

...

<dependency>
<groupId>[groupId-n]</groupId>
<artifactId>[artifactId-n]</artifactId>
<version>[version-n]</version>

</dependency>
</dependencies>

<build>
<plugins>

<plugin>
<groupId>com.hp.oo.sdk</groupId>
<artifactId>oo-action-plugin-maven-plugin</artifactId>
<version>${oo-sdk.version}</version>
<executions>

Action Developers Guide

HPE Operations Orchestration (10.70) Page 18 of 36

<execution>
<id>generate plugin</id>
<phase>process-sources</phase>

<goals>
<goal>generate-legacy-plugin</goal>

</goals>
</execution>

</executions>
</plugin>

</plugins>
</build>

</project>

Example: In the following example:

l The POM file is named example.pom.xml.

l Themy-legacy-actions.jar contains the desired actions.

l The generatedMaven plugin is com.example:my-legacy-actions:1.0.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.example</groupId>
<artifactId>my-legacy-actions-plugin</artifactId>
<version>1.0</version>

<packaging>maven-plugin</packaging>

<properties>
<oo-sdk.version>[THE LATEST HPE OO_SDK VERSION]</oo-sdk.version>
<oo-dotnet.version>[THE LATEST HPE OO_DOTNET VERSION]</oo-dotnet.version>

</properties>

<dependencies>
<!-- required dependencies -->
<dependency>

<groupId>com.hp.oo.sdk</groupId>
<artifactId>oo-legacy-action-plugin</artifactId>
<version>${oo-sdk.version}</version>

</dependency>
<!-- end of required dependencies -->

<dependency>

Action Developers Guide

HPE Operations Orchestration (10.70) Page 19 of 36

<groupId>com.example</groupId>
<artifactId>my-legacy-actions</artifactId>
<version>1.0</version>

</dependency>
</dependencies>

<build>
<plugins>

<plugin>
<groupId>com.hp.oo.sdk</groupId>
<artifactId>oo-action-plugin-maven-plugin</artifactId>
<version>${oo-sdk.version}</version>
<executions>

<execution>
<id>generate plugin</id>
<phase>process-sources</phase>
<goals>

<goal>generate-legacy-plugin</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>
</project>

Creating Operations from @Actions

To create an operation from the@Action that you developed in the Developing Plugins for Java Actions
section, you have to complete the following steps:

1. Find the Studio project inside the content pack module, for example, acmeArtifact-
cp/src/main/resources/acmeArtifact-project.

Action Developers Guide

HPE Operations Orchestration (10.70) Page 20 of 36

2. Import this project into Studio.

3. Build the acmeArtifact parent module usingMaven.

4. Import acmeArtifact-plugin to Studio.

The location of the plugin that you have to import is:
%HOMEPATH%\.m2\repository\acmeGroup\acmeArtifact-plugin\1.0.0\acmeArtifact-
plugin-1.0.0.jar.

5. In Studio, create a new operation, and select your plugin in theCreate Operations dialog box.

Note: If you encounter errors when creating a new operation due to somemissing dependencies,
perform the following steps:

a. Import the content pack from location:
%HOMEPATH%\.m2\repository\acmeGroup\acmeArtifact-cp\1.0.0\acmeArtifact-cp-
1.0.0.jar.

b. Close the content pack in Studio.

c. Retry to create the operation.

These steps also apply for .NET and legacy Java actions.

Create a Content Pack

After creating an operation, youmust create a content pack from your project, in order to deploy and
use it in Central. You have three possible approaches to create the content pack:

l Create a content pack with Studio: see Studio Guide for details.

l Create a content pack with Maven:

o Navigate to the location of the parent project, in the example in section Open the Project in a
Java IDE, c:\temp\acmeArtifact, open the command line and run mvn clean install.

o The content pack will be created inside the target folder from your content pack project.Open the
Project in a Java IDE, c:\temp\acmeArtifact\acmeArtifact-cp\target\acmeArtifact-cp-
1.0.0.jar)

l Create a content pack with OOSHA: seeOOSHA Guide for details.

For details on how to deploy the content pack in Central, see Central Guide.

Action Developers Guide

HPE Operations Orchestration (10.70) Page 21 of 36

CloudSlang Content Development

Maven Artifacts

To create new CloudSlang content, you need to develop Java actions, grouped under aMaven Artifact.

In CloudSlang, actions aremethods annotated with the@Action annotation.

CloudSlang does not support .NET or legacy Java actions.

Developing Maven Artifacts for Java Actions

Preparing to Create a Maven Artifact

Install Maven

See the Preparing to Create a Plugin Using aMaven Archetype section from for a complete guideline
on how to install and configureMaven.

Install Maven 3.3.9 to develop actions for CloudSlang

Creating a Maven Project

1. Navigate to the location on the filesystem where your project should reside and start a shell in that
directory.

2. On your command line, execute the followingMaven command:

mvn archetype:generate -DarchetypeArtifactId=maven-archetype-quickstart

3. During the project creation, enter the following details and press Enter after each one:

Action Developers Guide

HPE Operations Orchestration (10.70) Page 22 of 36

o groupId: The group id for the resultingMaven project. acmeGroup is used in the example
below.

o artifactId: The artifact id for the resultingMaven project. acmeArtifact is used in the
example below.

o version: The version of the resultingMaven project. 1.0-SNAPSHOT is used in the example
below.

o package: The package for the files in the project. The default for this option is the same as the
groupId.

4. Locate the pom.xml file inside your project. Open it, and add the dependency below inside the
<dependencies> tag.

<dependency>
<groupId>com.hp.score.sdk</groupId>
<artifactId>score-content-sdk</artifactId>
<version>1.10.6</version>

</dependency>

Open the Project in a Java IDE

Open this project in a Java IDE application. It is recommended to use a Java IDE with Maven support.

The project contains the following directory structure:

Action Developers Guide

HPE Operations Orchestration (10.70) Page 23 of 36

Creating a New Action

A Java action is amethod that conforms to the signature public Map<String, String>
doSomething(parameters), annotated with the@Action annotation.

You can find the complete specification of the@Action annotation in the Developing Actions section.

Build Maven Artifact

To build your maven project, navigate to the location of the project, for example, c:\Program
Files\acmeArtifact, open the command line and run mvn clean install.

You can see the artifacts resulted from the build process under the target folder generated inside your
project.

These artifacts are also installed in the local maven repository located at
%HOMEPATH%\.m2\repository or $HOME/.m2/repository.

For example, you can find the resulted artifact from building acmeArtifact located in:
%HOMEPATH%\.m2\repository\acmeGroup\acmeArtifact\1.0-SNAPSHOT\acmeArtifact- 1.0-
SNAPSHOT.jar.

Creating CloudSlang Operation from Java Action

To create a CloudSlang operation, youmust first create a project for placing the operation.

Creating a new Project from a predefined template

To create a new project:

1. Download template-project.zip from HPE LN.

2. Unzip template-project.zip to the desired location.

3. Find the directory template-projectwith the following structure.

Action Developers Guide

HPE Operations Orchestration (10.70) Page 24 of 36

4. Rename template-project directory to the name you want to provide for the new project

For aCloudSlang project, the project naming convention is: cs-[<vendor>]-
<product|technology>

For example: cs-vmware-vcenter

5. Locate pom.xml file. Open it and replace the value inside the artifactId tag with the name of
the project.

For example: <artifactId>cs-vmware-vcenter </artifactId>

6. Locate the contentpack.properties file. Open it and provide values for the properties specified in
that file.

o content.pack.name: It is recommended to specify a value for this property. The value should
be the name of the project.

o content.pack.version: It is recommended to specify a value for this property. The valuemust
be the same as the value from the version tag inside the pom.xml file. If you want to update
the version of the project, youmust update it inside both files.

o content.pack.description

o content.pack

o publisher

Create CloudSlang Operation

Locate the Library folder inside your project, at <project_path>/Content/Library.

Inside the Library folder create a directory structure, representing the namespace of the operation.

The namespace for a CloudSlang operation has a similar role to a Java package.

Example: Create the namespace acme/operations

Action Developers Guide

HPE Operations Orchestration (10.70) Page 25 of 36

Inside your namespace, create a new file with the .sl extension.

Example: The path of the new file will be <project_path>/Content/Library/acme/operations/my_
op.sl.

Inside the .sl file, create a CloudSlang operation that calls the Java action. See the CloudSlang tutorial
on how to build an operation for details.

Developing Maven Artifacts for Python Scripts

Create Maven Project

1. Create a Python project having the following tree structure:

my-python-module
|--__init__.py
|--another-module
|--__init__.py
|--script1.py
|--script2.py

2. Place the two template files, pom.xml and assembly.xml insidemy-python-module folder.

3. Edit the pom.xml file and change theGAV of themodule.

<groupId>mycompany</groupId>
<artifactId>my_first_artifact</artifactId>
<version>87.0</version>

Open Project in Python IDE

Open the project in a Python IDE, to create Python functions that will be called from Python operations.

Build Maven Artifact

To build your maven project, navigate to the location of the Python project (my-python-module path),
open the command line and run mvn clean install.

Action Developers Guide

HPE Operations Orchestration (10.70) Page 26 of 36

You can see the artifacts resulted from the build process under the target folder generated inside your
project.

These artifacts are also installed in the local maven repository located at
%HOMEPATH%\.m2\repository or $HOME/.m2/repository.

For example, you can find the resulted artifact from buildingmy-python-module located in:
%HOMEPATH%\.m2\repository\ mycompany \my_first_artifact\87.0\ my_first_artifact-87.0.zip.

Creating CloudSlang Python Operation

To create a CloudSlang operation, youmust first create a project for placing the operation.

You can create the project from a predefined template as described in section Creating CloudSlang
Operation from Action.

Create CloudSlang Operation

Locate the Library folder inside your project, at <project_path>/Content/Library.

Inside the Library folder create a directory structure, representing the namespace of the operation.

The namespace for a CloudSlang operation has a similar role to a Java package.

Example: Create the namespace acme/operations

Inside your namespace, create a new file with the .sl extension.

Example: The path of the new file will be <project_path>/Content/Library/acme/operations/my_
op.sl.

Inside the .sl file, create a CloudSlang operation that calls a Python script. In the Python script, you
can invoke the Python functions that you developed. See the CloudSlang tutorial on how to build a
Python operation for details.

Create a Content Pack

After creating an operation, youmust create a content pack from your project, in order to deploy and
use it in Central. You can create a content pack from aCloudSlang project using OOSHA. SeeOOSHA
Guide for details.

For details on how to deploy the content pack in Central, see Central Guide.

Action Developers Guide

HPE Operations Orchestration (10.70) Page 27 of 36

Python libraries will not be included in the content pack built by OOSHA. In order to include them,
youmust copy the zip resulted from building your project inside the content pack Lib folder.

For example, you will have to copy the zip from%HOMEPATH%\.m2\repository\ mycompany \my_
first_artifact\87.0\ my_first_artifact-87.0.zip at the following location inside the content pack created
by OOSHA: Lib/mycompany/my_first_artifact/87.0/my_first_artifact-87.0.zip.

Developing @Actions

An action is amethod that has the @com.hp.oo.sdk.content.annotations.Action annotation.

@Actionmust be applied on Javamethods that conforms to the signature:

@Action
public Map<String, String> doSomething(parameters)

The@Action annotation is invoked during flow execution, and specifies the following action
information:

l name: name of the action

l outputs: action outputs

l responses: action responses

"Hello World!" Example

Following is a simple "Hello World!" action example:

public class MyActions {
@Action
public void sayHello() {

System.out.println("Hello World!");
}

}

By default, the created@Action is named after themethod that defines it. In the "HelloWorld!"
example, the@Action name is sayHello. The@Action name is used in the operation's definition. The
operation is themeans to expose an@Action to Studio and to flow authors. Each operation points to a
specific groupId, artifactId, version, and@Action name (GAV+@Action name).

Action Developers Guide

HPE Operations Orchestration (10.70) Page 28 of 36

You can customize the@Action name and provide a name that is different from themethod name. You
can do this using the@Action annotation value parameter. The following code defines the same "Hello
World!" @Action, but names it my-hello-action:

public class MyActions {
@Action(“my-hello-action”)
public void sayHello() {

System.out.println("Hello World!");
}

}

Passing Arguments to @Actions

An@Action is exposed to the flow context and can request parameters from it. The flow context holds
the state of the flow. For example, consider the following@Action, which adds two numbers and prints
the result to the console:

@Action
public void sum(int x, int y){
System.out.println(x+y);

}

Parameters are taken from the context by name. The summethod requests two integer parameters x
and y from the context. When invoking the@Action, HPE Operations Orchestration assigns the value
of x and y from the context to themethod arguments with the same name.

Just like with@Action, it is possible to customize parameter names and request that HPE Operations
Orchestration resolves the value while using a custom name. In the following example, the sum
method requests that the context op1 parameter is assigned to the x argument and op2 to the y
argument:

@Action
public void sum(@Param("op1") int x, @Param("op2") int y){
System.out.println(x+y);

}

The classes ResponseNames, ReturnCodes, InputNames, and OutputNames, under the
com.hp.oo.sdk.content.constants package, include commonly used constants, which you can use
in the@Action.

For example, input names such as HOST, USERNAME, PASSWORD, PORT, and so on, or response
names such as SUCCESS, FAILURE, NO_MORE, and so on.

Action Developers Guide

HPE Operations Orchestration (10.70) Page 29 of 36

Return Values

An@Action, like any Javamethod, can also return a single value. The returned value is considered the
return result of the@Action and is used as return result in the operation. It is also possible for an
@Action to returnmultiple results to the operation. This is done by returning aMap<String, String>,
where theMap key is the name of the result, and the associated value is the result value. Returning a
Map<String, String> is a way for an@Action to pass multiple outputs to the operation at runtime.

Adding @Action Annotations

@Action annotations are used tso generate new operations in the Studio. When generating an@Action
based operation, the new operation’s initial attributes (description, inputs, outputs, responses) are
taken from the@Action annotations definitions.

When developing plugins, youmust correctly annotate the actions that return only a single value. The
annotation has to declare an output with the special name singleResultKey. There is a constant
ActionExecutionGoal.SINGLE_RESULT_KEY that assists you, for example:

@Action(name = "modulo-ten",
description = "returns the last digit",
outputs = @Output(ActionExecutionGoal.SINGLE_RESULT_KEY),
responses = @Response(text = ResponseNames.SUCCESS,
field = OutputNames.RETURN_RESULT,
value = "0", matchType = MatchType.ALWAYS_MATCH,
responseType = ResponseType.RESOLVED)

)
public int moduloTen(@Param("number") int number) {
return number % 10;

}

It is important that you use@Action annotations; otherwise, operations created from these
@Actions are harder to use.

Action Developers Guide

HPE Operations Orchestration (10.70) Page 30 of 36

Annotations

Addingmetadatameans adding or setting the relevant annotations and their attributes. The following
table describes the@Action, @Output, @Response and@Param annotations:

Action

The @com.hp.oo.sdk.content.annotations.Action annotation specifies information on an action.

Attributes:

l value (optional): the name of the@Action

l description (optional)

l Output[] (optional): array of outputs (see below)

l Response[] (optional): array of responses (see below)

Comments:

You have two options for setting the name of the@Action:

1. The value attribute:

@Action("aflPing") public void ping(…)

or

@Action(value="aflPing") public void ping(…)

2. Themethod name:

@Action
public void ping(…)

The names are checked in the above order. The first one checked is the value attribute. If it doesn’t
exist, themethod name is selected.

Action Developers Guide

HPE Operations Orchestration (10.70) Page 31 of 36

Param

The @com.hp.oo.sdk.content.annotations.Param annotation specifies information on a parameter
of an action.

Attributes:

l value: the name of the input

l required (optional): by default is false

l encrypted (optional): by default is false

l description (optional)

Comments:

This is important not only for the@Action data, but also for execution.

Inputs give an operation or flow the data needed to act upon. Each input is mapped to a variable. You
can create an input for a flow, operation, or step.

In Studio, inputs can be:

l Set to a specific value

l Obtained from information gathered by another step

l Entered by the person running the flow, at the start of the flow

See the HPE OO 10 Studio Authoring Guide for more information and see "Passing Arguments to
@Actions" for details on the execution functionality.

Output

The @com.hp.oo.sdk.content.annotations.Output specifies an output for an action.

Attributes:

l value: the name of the output

l description (optional)

Comments:

Action Developers Guide

HPE Operations Orchestration (10.70) Page 32 of 36

In order for the operation in Studio to havemultiple outputs, the@Action itself has to declare them.
Assigning values tomultiple outputs can be achieved by creating an@Action whose return value is a
Map<String, String>.

In order for the operation in studio to have only one output, the@Action itself has to declare it in the
return value, and use the SINGLE_RESULT_KEY for binding.

The output is the data produced by an operation or flow. For example, success code, output string, error
string, or failuremessage.

In Studio, the different kinds of operation outputs include:

l Raw result: the entire returned data (return code, data output, and error string).

l The primary and other outputs, which are portions of the raw result.

Response

The @com.hp.oo.sdk.content.annotations.Action annotation specifies a possible response of an
action.

Attributes:

l text: the text displayed by each response transition

l field: the field to evaluate

l value: the expected value in the field

l description: (optional)

l isDefault: Indicates whether this is the default response. The default value is false. Only one
response in a@Action can have this set to true.

l mathType : The type of matcher to activate against the value. For example if we defined (field =
fieldName, value = 0, matchType = COMPARE_GREATER) this means that this response will be
chosen if the field fieldNamewill have a value greater than 0.

l responseType: The type of the response (Success, Failure, Diagnosed, No_Action or Resolve_
By_Name).

l isOnFail: Indicates whether this is the On-Fail response. The default value is false. Only one
response in a@Action can have this set to true.

l ruleDefined: Indicates whether or not this response has a rule defined. Responses that have no
rules defined can be used as the default response. There should be only one response without a rule
defined in a single@Action.

Action Developers Guide

HPE Operations Orchestration (10.70) Page 33 of 36

Comments:

A response is the possible outcome of an operation or flow. The response contains a single rule: field
matches value. See the HPE OO 10 Studio Authoring Guide for more information.

@Action Data Definition Example

@Action(value = "aflPing",
description = "perform a dummy ping",
outputs = {@Output(value = RETURN_RESULT, description ="returnResult

description"),
@Output(RETURN_CODE),
@Output("packetsSent"),
@Output("packetsReceived"),
@Output("percentagePacketsLost"),
@Output("transmissionTimeMin"),
@Output("transmissionTimeMax"),
@Output("transmissionTimeAvg")},

responses = {@Response(text = "success", field = RETURN_CODE, value =
PASSED),

@Response(text = "failure", field = RETURN_CODE, value =
FAILED)})

public Map<String, String> doPing(
@Param(value = "targetHost",

required = true,
encrypted = false,
description = "the host to ping") String targetHost,

@Param("packetCount") String packetCount,
@Param("packetSize") String packetSize) { …

}

Testing Extensions

As an@Action is a simple Javamethod, it is possible to test it using standard Java test tools such as
JUnit, leveraging the normal lifecycle phases of aMaven project.

As the@Action itself is a regular method, it does not require invoking any HPE Operations
Orchestration components. The invocation can be a direct Javamethod invocation in the test case.

Action Developers Guide

HPE Operations Orchestration (10.70) Page 34 of 36

Testing Extensions as Part of the Project Build

Once they are packaged into a plugin, you can invoke extensions from the command line for test
purposes. The following is an@Action example:

public class TestActions {
@Action
public int sum(@Param("op1") int x, @Param("op2") int y){

return x+y;
}

}

Suppose the TestActions class is in a plugin with the following groupId, artifactId and version (GAV):
com.mycompany:my-actions:1.0

You can invoke the sum@Action from the command line as follows:

mvn com.mycompany:my-actions:1.0:execute -Daction=sum -Dop1=1 -Dop2=3 -X

The result of this command is a long trace. The -X option is required to see logmessages. Towards the
end of the trace you can see:

[DEBUG] Configuringmojo 'com.mycompany:my-actions:1.0::execute' with basic configurator -->
[DEBUG] (f) actionName = sum [DEBUG] (f) session =
org.apache.maven.execution.MavenSession@21cfa61c [DEBUG] -- end configuration -- [DEBUG]
Action result: action result = 4

References

l MavenGetting Started Guide: https://maven.apache.org/guides/getting-started/index.html

l Installing ApacheMaven: https://maven.apache.org/install.html

l UsingMirrors for Repositories: https://maven.apache.org/guides/mini/guide-mirror-settings.html

l CloudSlang Tutorial: http://cloudslang-docs.readthedocs.io/en/v1.0/section_tutorial.html

Action Developers Guide

HPE Operations Orchestration (10.70) Page 35 of 36

	Introduction
	System Requirements
	Prerequisites
	HPE OO Content Development
	HPE OO Plugins
	Developing Plugins for Java Actions
	Preparing to Create a Plugin Using a Maven Archetype
	Creating a Plugin Using a Maven Archetype
	Open the Project in a Java IDE
	Creating a New Action
	Build Maven Plugin

	Developing Plugins for .NET Actions
	Developing Plugins for Legacy Actions
	Creating Operations from @Actions
	Create a Content Pack

	CloudSlang Content Development
	Maven Artifacts
	Developing Maven Artifacts for Java Actions
	Preparing to Create a Maven Artifact
	Creating a Maven Project
	Open the Project in a Java IDE
	Creating a New Action
	Build Maven Artifact
	Creating CloudSlang Operation from Java Action
	Creating a new Project from a predefined template
	Create CloudSlang Operation

	Developing Maven Artifacts for Python Scripts
	Create Maven Project
	Open Project in Python IDE
	Build Maven Artifact
	Creating CloudSlang Python Operation
	Create CloudSlang Operation

	Create a Content Pack

	Developing @Actions
	Hello World! Example
	Passing Arguments to @Actions
	Return Values
	Adding @Action Annotations
	Annotations
	Action
	Param
	Output
	Response

	@Action Data Definition Example

	Testing Extensions
	Testing Extensions as Part of the Project Build

	References

